
Design for an Adaptive Object-Model Framework

An Overview

Hugo Sereno Ferreira1,2, Filipe Figueiredo Correia2, and Ademar Aguiar1,2

1 INESC Porto
2 Faculdade de Engenharia

Universidade do Porto
Rua Dr. Roberto Frias, s/n

{hugo.sereno, filipe.correia, ademar.aguiar}@fe.up.pt

Abstract. The Adaptive Object-Model (AOM) architectural pattern
has been significantly documented in literature, but there is not yet
enough documentation explaining how to design and build a full AOM-
based system. A AOM framework would need to address an additional
number of issues that go well beyond individual software patterns. In
this paper, we propose a design for a AOM framework that addresses
several issues of building AOM-based systems, namely: integrity, run-
time co-evolution, persistency, user-interface generation, communication
and concurrency. We borrow concepts from distributed version-control
systems. We show how applications based on a concrete realization of
this framework, called Oghma, helps to avoid a traditional two-level do-
main classification, reduces accidental complexity, and directly exposes
confined model evolution to the end-user.

Key words: Adaptive Object-Models; Frameworks; Software Design

1 Introduction

The industrialization of software development has been increasingly faced with
the growth of software complexity. A considerable effort in development is also
repeatedly applied to the same tasks, despite all the effort in research of reuse
techniques and good practices, thus suggesting that reuse may need to be per-
formed even more and at higher-levels. Hiding these inherent complexities of
technological concerns by creating abstractions as been a recurrent reaction, at
the cost of widening the existing gap between specification and implementation
artifacts [9]. To make these abstractions useful not only for modeling, docu-
mentation, analytical and reasoning purposes [5, 12], models have to be made
executable, by systematic transformation [15] or interpretation [14] of problem-
level abstractions (i.e. specifications) into implementations (i.e. algorithms).



1.1 System Variability and Evolution

The difficulty of acquiring, inferring, capturing and formalizing software require-
ments is a recurrent problem in software engineering. This is because not only
those processes are dependent upon the stakeholders’ perspectives, but also be-
cause requirements often change faster than implementations. Since evolving
software requires a considerable effort, as the implementation progresses, a strong
resistance against changing the requirements is developed. What seems to be dis-
missed is that not only some business domains rely on constant adaptation of
their own processes, but also that new knowledge is incrementally acquired as
development unfolds, leading to new insights and expectations from software. If
it is known a priori that the systems being developed are incomplete by design,
won’t there be benefits in designing for incompleteness? [11] Even so, current
practices often focus on quick functional change, disregarding conceptual design,
leading to a Big Ball of Mud, and eventually facing total reconstruction with
a significant impact in economy [8]. Successful software needs to increase its
resilience to change [13].

1.2 Framework for Adaptive Object-Models

Approaches to the use of models have traditionally been generative, automat-
ically refining models into code artifacts during development. However, such
techniques are based upon two premises: (a) that changes are always introduced
by developers, within the development environment, and (b) that a full compile
cycle (e.g. shutting down the system) is affordable. When these premises fail
to hold, generative approaches may reveal insufficient, thus leading to the use
of runtime domain models [14]. The systematic search for higher levels of ab-
stractions — both to improve analysis and increase reuse — associated with the
pervasive adoption of object-oriented models, converged to a common architec-
tural style called the Adaptive Object-Model (AOM) [19, 18], which is founded
on a growing collection of AOM-related patterns [7, 17, 16]. As patterns, they
usually occur not as reusable components, but as perceived abstractions within
the design of each particular system. In this paper, whenever referring to a pat-
tern we use a SmallCase typographical style.

Frameworks are both reusable designs and implementations, that orchestrate
the collaboration between core entities of a system. While they establish part
of the system’s behavior, they are deliberately open to specialization by provid-
ing hooks and specialization points. The framework dictates the architecture of
the underlying system, defining its overall structure, key responsibilities of each
component, and the main thread of control. It captures design decisions com-
mon to its application domain, thus emphasizing design reuse over code reuse.
Patterns differ from frameworks because (a) are more abstract, (b) have smaller
architectural elements, and (c) are less specialized [10].

Section 2 will provide a general overview of a framework which supports the
development of AOM-based systems, and then proceed to detail each concern
independently. Section 3 focus on its use within industry. Section 4, will draw
some conclusions and present remaining issues to be addressed in the future.



single processclient-server

Controller

Warehouse

Communications

Controller

Application

Persistency

Application

Controller

Warehouse

Persistency

distributed

Application

Controller

Warehouse

Persistency

Application

Controller

Warehouse

Fig. 1. Three possible component configurations of the framework: (a) client-server,
where several processes are controlled by a centralized server, (b) single-process, only
allowing a single running application, and (c) distributed, which takes advantage of
the data-replication mechanisms from the underlying persistency engines.

2 Oghma: Architecture and Design

Oghma, which components are depicted in Fig. 1, is a framework to develop
AOM-based systems, that balances adaptability and reuse. It supports the cre-
ation of models resembling MOF [1] and UML [2], and aims at covering the
entire cycle of system creation and evolution. It also allows the introduction
of changes to the system during runtime, thus providing a particular kind of
confined end-user development.

Furthermore, the framework leverages the infrastructure used to support sys-
tem evolution to provide additional features, such as auditing over the system’s
usage, and time-traveling to an arbitrary point along its evolution (i.e. to set the
system in a past state).

Oghma includes a set of interchangeable components designed to have an high
degree of flexibility — it supports several types of persistency engines, including
relational, object-oriented, key-value and document-oriented, and architecture
styles, such as single-process, client-server, and distributed.

2.1 Core — Structural

Fig. 2 depicts the design of the structural core of Oghma, resembling the Type-
Square [19] pattern: (a) ObjectType, which is refined into Entities (that rep-
resent classes) and Interfaces, (b) Instance, which complies to a given Entity,
(c) PropertyType, which is refined into RelationNodes and Attribute-Types,
and (d) Property which complies to its PropertyType. Each Relation-Node, be-
sides specifying cardinality, navigability and role, must be connected to another
node, thus establishing a RelationType. In order for a RelationType to have
properties (similar to the Associative Class in UML) it can relate to an Entity.
Entities can also inherit from other Entities and/or multiple Interfaces.
Model-defined Entities and Instances can be made Types and Objects of the
underlying programming language through the use of Plugins.



meta-level

Instance

Entity

Property

PropertyType

AttributeType

RelationTypeInterface

ObjectType

assoc

0..1

implements
0..*

inherits
0..1

1

1
Navigability
Cardinality
Role

RelationNode

Fig. 2. Core design of the structural meta-model.

2.2 Core — Behavioral

Fig. 3 depicts Expression as the central concept of the behavioral core, extend-
ing the Rule Object pattern [17]. Expressions are stated in a Domain Specific
Language and may be evaluated using an Interpreter [10] or a Virtual Ma-
chine. They’re widely used to define: (a) ObjectType invariants, (b) derivation
rules in PropertyTypes and Views, (c) body of Methods, (d) guard-conditions
of Operations, etc. As such, they play an important role in assuring seman-
tic integrity during model evolution (see Section 2.7). Structural rules, such as
the cardinality and uniqueness of a PropertyType are translated to ObjectType
invariants. Methods, which are used-defined Batches of Operations, may be in-
voked manually, or triggered by Events, thus allowing the specification of State
Machines.

2.3 Controller

As seen in Fig. 1, the Controller serves as a entry layer for the GUI and Com-
munications components, and it’s key responsibility is to orchestrate the several
other components in the framework by establishing a thread of control. It boot-
straps the system by loading the meta-model, and the necessary versions of the
domain-model from the Warehouse. It manages data requests by interacting with
the Warehouse. It also provides several hooks to the framework through Chains
of Responsibility and Plugins (e.g. interoperability with third-party systems
by allowing subscribers to intercept requests).

2.4 Warehousing and Persistency

Because of the evolutive nature of the model, mapping to a classic relational
database through the use of ORMs complexifies co-evolution. Warehousing (Fig.
1) hides the details of persistency from the Controller, exposing and consum-
ing data and meta-data (i.e. Things), and managing versioning (i.e. through



Core - Behavioral

PropertyType

ObjectType

Method Expression

invariant

body

Create
Update
Delete
Manual

<<enum>>
Event

1..*

derived by

0..*

Entity

Operation

guard

Condition

1..*

Fig. 3. Core design of the behavioral meta-model.

Versions and States). Its behavior can be extended and modified through
inheritance and composition, as by the Decorator [10] pattern. Transient
memory-only, direct data-base access, lazy and journaling strategies (e.g. using
Caches [10]) are just a few examples of existing (and sometimes simultaneous)
configurations. Also, Things are always regarded as opaque, key-valued objects.

2.5 Communications

This design allows to assemble several types of communication stacks. If a client-
server HTTP-based stack is chosen, Oghma currently provides a RESTful API
for communication between the Server Controller and Client Controller
through a pair of HTTP Bridge and Server Dispatcher acting as Proxies [10].
Every Thing is addressable by its unique identifier as a resource. The contents of
States and Changesets are serialized in XML. Simple queries can be expressed
directly in the URL; those more complex require POST methods.

By specialization of the communication layer, other types of technology can
be used for bridging the controllers (e.g .NET Remoting). For example, in the
case of a single-user stack, the Client Controller would interact directly with
the Server Controller. A different approach from the client-server architec-
ture is to use distributed key-value databases (e.g. CouchDB), to handle both
persistency and communication. Here, every application would assume direct
access to the Controller, delegating the responsibility of disseminating contents
to the underlying data warehouse.

2.6 Integrity

The Structural Integrity of the run-time model is asserted through rules
stated in the meta-model. For example, Instances should conform to their
specified Entity (e.g. they should only hold Properties which PropertyType
belong to its Entity). Nonetheless, evolving the model may corrupt structural
integrity, such as when moving a mandatory PropertyType to its superclass (e.g.
if it doesn’t have a default value, it can render some Instances non-compliant).



Operations

Operation State

Create Delete Update Relate Unrelate

1..*
Batch

* {ordered}

Merge

Method produces

Fig. 4. Data and meta-data are manipulated through Operations, similarly to the
Command [10] pattern, which produces new States of Things.

Some model evolutions can be solved by foreseeing integrity violations and ap-
plying prior steps to avoid them (e.g. one could first introduce a default value
before moving the PropertyType to its superclass).

Some steps of a particular evolution may also violate model integrity, al-
though the end result would be valid. For example if a PropertyType is manda-
tory, one cannot delete its Properties without deleting itself and vice-versa.
This problem is solved by the use of Changesets, and only enforcing integrity
at the end.

Semantic Integrity, on the other hand, is much harder to ensure since it’s
not encoded as rules in the meta-model. One cannot just look to the results of
an arbitrary evolution and infer the steps which have lead to it. Consider the
scenario where an AttributeType age is renamed to date-of-birth, recalcu-
lated according to the current date, and moved to it’s superclass Person. Would
we rely on the direct comparison of the initial and final models, a possible solu-
tion would be to delete the attribute age in Employee and create the attribute
date-of-birth in Person. However, the original meaning of the intended evolu-
tion (e.g. that we wanted to store birth-dates instead of ages) would be missed.
To solve this problem, Oghma makes use of Migrations [7], providing and stor-
ing sequences of model-level operations that cascade into instance-level changes.

2.7 Evolution

Allowing collaborative co-evolution of model and data by the end-user intro-
duces a new set of concerns not usually found in classic systems. They are (a)
how to preserve model and data integrity, (b) how to reproduce previously in-
troduced changes, (c) how to access the state of the system at any arbitrary
point in the past, and (d) how to allow concurrent changes. These concerns can
be summarized into traceability, reproducibility, auditability, disagreement and
safety, and are commonly found on version-control systems.

Typically, evolution is understood as the introduction of changes to the
model. Yet, the presented design doesn’t establish a difference between chang-
ing data or meta-data; both are regarded as evolutions of Things, expressed as



ChangeSet Operation

State

Version

base

provides

has
1..*

1..*

Merged
Container

<<interface>>
IContainer

1..*

background

overlay

Mergespawn

base

changes

State

1..*

ObjectType Instance

Identifier {unique}
Metalevel

Thing
1..*

has

Fig. 5. (a) Merging mechanism used to validate and apply operations stored in a
Changeset. (b) Data and meta-data are both viewed as Things and States.

Operations over States, and performed by the same underlying mechanisms as
depicted in Fig. 4. To provide enough expressivity such that semantic integrity
can be preserved during co-evolution, model-level Batches operate simultane-
ously over data and meta-data.

Sequences of Operations are encapsulated as ChangeSets, following the His-
tory of Operations pattern [7], along with meta-information such as user,
date and time, base version, textual observations, and data hashes. Whenever
the framework validates or commits a ChangeSet, the Controller uses the merge
mechanism depicted in Fig. 5 (similarly to the System Memento pattern [7]),
which dynamically overlays the modifications onto the base version by orderly
applying each Operation, allowing for behavioral rules to be evaluated, and
finally resulting in a new version.

If all changes to the data and model are preserved, one can easily recover past
information. This not only solves the aforementioned issues, but it also brings
to information systems the same notions of versioning that changed the scenario
of collaboration in wikis and software development.

2.8 User-Interface

Oghma provides a run-time adaptive UI, by inspection and interpretation of
the model and using a set of pre-defined heuristics and patterns. While detailing
every heuristic applied is outside the scope of this paper, an overview is provided.

A set of grouped entry-points are presented to the user through the GUI.
Groups correspond to Packages and entry-points to selected ObjectTypes. When
choosing an entry-point, a list of the associated instances is presented, showing
several details in distinct columns, inferred from special annotations made in
the model; along with generic search mechanisms. ObjectTypes have two de-
fault views: edition and visualization. During edition, Oghma uses heuristics to
render each Property by inspecting the cardinality, navigability and role of both
nodes of a RelationType. The result is a different input panel, according to the



property in question: text-fields, text-areas, combo-boxes, tree-views, lists, em-
bedded forms, etc.. Visualization is defined using Views — virtual Instances
where every Property is derived — and are subsequently transformed through
templates before being presented to the user. Mechanisms as clipboard (using ob-
ject identifiers), undo and redo (using Operations) are orthogonally supported.
Custom panels, either for special types (e.g. dates) or model-chunks (e.g. user
administration), can also be loaded as Plugins.

The user workflow resembles those when using version-control systems. User
changes are not immediately applied; instead, Operations are stored into the
user Changeset, and sent to the Server Controller, allowing it to assert in-
tegrity and provide feedback on behavioral rules. When a user chooses to, it
can commit its work to the server, by reviewing the list of Operations and
additionally submitting a descriptive text about his work.

Awareness is also addressed through several feedback techniques: graphics
that show the history of changes either in a particular ObjectType, by user or
globally; alerts to the user for simultaneous pendent changes in the same objects,
and presenting reconciliation screens when conflicts are detected; etc.

3 Oghma in the Industry

Oghma has been implemented in C# using the Microsoft .NET Framework v3.5,
although the design here presented doesn’t depend on a specific technology.

3.1 Use Cases

Oghma was already used to create production-level applications: (a) Locvs, an
Information System for Management of Architectonic and Archaeological Her-
itage, and (b) Zephyr, a tool for document records management [3, 4]. Of par-
ticular interest is Locvs, whose domain model currently consists of more than
300 classes, and has gone through more than 1000 model versions, 12k instance-
level commits, and 200k Things, throughout approximately 2 years of usage and
evolution. It is deployed in dozens of machines using a client-server architec-
ture. Performance tests have lead it to currently use SQLite as a storage and
Full-Text Search engine. A custom-made DSL for specifying behavior was also
implemented. This application will be a valuable asset to further research the
role of AOMs in the development of large-scale information systems.

3.2 Lessons Learned

The development and usage of Oghma targeting adaptive applications allows us
to elicit some lessons. First, the skills needed to deal with this type of architec-
ture aren’t trivial to find, and developers are not necessarily at ease to work at
these levels of abstraction. From a framework standpoint, there’s also a thin bal-
ance between a framework that makes the creation of new systems a quick and
easy process, and one that is flexible enough to cover a wide scope of systems.



Because it’s very tempting to make the framework address all use-cases using an
adaptive and model-driven approach, there is a risk of the final models becoming
as elaborate and complex as a full-blown programming language. In this sense,
hooks are a key issue, as they are not always easy to foresee, but they establish
the border line between what should be regarded as part of the framework and
what is particular behavior of a specific instantiation.

Nonetheless, the conduction of small model experiences seem to show it’s easy
to quickly build a functional prototype which can be shown to the customer, thus
providing very early feedback before refining it into a production-level applica-
tion. Not only the costumer involvement in this process is also increased due
to the end-user development capabilities offered by the framework, but it also
reduces the burden of up-front design by allowing an incremental approach to
formalization of the underlying business model.

4 Conclusions

Adaptive Object-Models and application frameworks are both solutions for a
common problem: to increase software reuse. They try to minimize the effort
of developing and evolving a software system. A AOM is a meta-architecture
for domain variability; frameworks focus on providing code and design reuse. In
this paper, they are combined and presented as a conceptual framework design
which allows the creation of AOM-based systems, along with some details of a
particular implementation being used within an industrial environment: Oghma.

Leveraging the concept of adaptability, end-users are empowered to intro-
duce (confined) changes to the model at run-time. This choice raised several is-
sues, such as traceability, reproducibility, auditability, disagreement and safety,
which were addressed in the framework by borrowing concepts from distributed
version-control systems. One of the side-effects of unifying data and meta-data
evolution was that the classical two-level domain classification, where types are
static entities, is diluted, thus reducing accidental complexity of applications [6].
For example, a user can edit an enumeration, or add a new specialization of a
class, by directly editing the model, hence preserving the classification levels.

Yet, several open-issues remain to be addressed. While automatic run-time
generated user-interfaces may not be on pair with custom-made ones regarding
usability, they seem to be consistent and based on a strict set of metaphors,
supporting a quick learning process by users. Nonetheless, which mechanisms
should the framework provide to improve usability and customization of GUIs,
while retaining the capability of automatically generating them?

Furthermore, no studies on the performance, robustness, usability, evolv-
ability, maintainability, consistency, composability, scalability and several other
software quality attributes regarding Adaptive Object-Models, in comparison to
classical systems, were published yet, and even less regarding AOM frameworks.

In the design proposed in this paper, we’ve addressed data and meta-data
evolution through an unified architecture. However, the whole framework de-
pends on the definition of a well-known meta-model. Operations that support



model evolution are thus dependent on this definition. How often would the
meta-model change, and how can we easily cope with its evolution? Should the
abstraction be raised yet another level, or is a self-compliant meta-model enough
to provide mechanisms for its own evolution?

Finally, this paper provides only an overview of the framework. There are
several issues that should be taken into account when implementing it. Such de-
tails are outside of the scope of the work developed so far, but they are expected
to be addressed in future work.

5 Acknowledgments

We would like to thank both FCT and ParadigmaXis, S.A. for sponsoring this
research through the grant SFRH / BDE / 33298 / 2008.

References

1. MOF version 2.0. http://www.omg.org/spec/MOF/2.0/, Accessed on 2009/08/06.
2. UML version 2.2. http://www.omg.org/spec/UML/2.2/, Accessed on 2009/08/06.
3. Locvs. Technical report, ParadigmaXis, S.A. produced to CMP, 2009.
4. Zephyr. Technical report, ParadigmaXis, S.A. produced to CMP, 2009.
5. J. Arlow, W. Emmerich, and J. Quinn. Literate modelling—capturing business

knowledge with the uml. The Unified Modeling Language: UML’98, 1999.
6. C. Atkinson and T. Kühne. Reducing accidental complexity in domain models.

2008.
7. H. Ferreira, F. Correia, and L. Welicki. Patterns for data and metadata evolution

in adaptive object-models. Proceedings of the 15th Conference on PLoP, 2008.
8. B. Foote and J. Yoder. Big ball of mud. PLoP’00, 2000.
9. R. France and B. Rumpe. Model-driven development of complex software: A re-

search roadmap. International Conference on Software Engineering, Jan 2007.
10. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-

Wesley Professional, 1995.
11. R. Garud, S. Jain, and P. Tuertscher. Incomplete by design and designing for

incompleteness. Organization Studies, Jan 2008.
12. J. Krogstie, A. Opdahl, and G. Sindre. Advanced information systems engineering:

19th international conference. Jan 2007.
13. D. Riehle and E. Dubach. Why a bank needs dynamic object models. OOPSLA

Workshop on Metadata and Active Object Models, 1998.
14. D. Riehle, S. Fraleigh, D. Bucka-Lassen, and N. Omorogbe. The architecture of a

uml virtual machine. Jan 2001.
15. M. Voelter. A catalog of patterns for program generation. 2003.
16. L. Welicki, J. Yoder, and R. Wirfs-Brock. A pattern language for adaptive object

models: Part i-rendering patterns. hillside.net.
17. L. Welicki, J. Yoder, R. Wirfs-Brock, and R. Johnson. Towards a pattern language

for adaptive object models. OOPSLA ’07: Companion to the 22nd ACM SIGPLAN
conference on OO programming systems and applications companion, Oct 2007.

18. J. Yoder, F. Balaguer, and R. Johnson. Adaptive object-models for implementing
business rules. Urbana.

19. J. Yoder, F. Balaguer, and R. Johnson. Architecture and design of adaptive object-
models. ACM SIGPLAN Notices, Jan 2001.


