
Software Knowledge Capture and Acquisition:
Tool Support for Agile Settings

Filipe Figueiredo Correia
ParadigmaXis

Avenida da Boavista, 1043
4100-129 Porto, Portugal

Faculdade de Engenharia,
Universidade do Porto

Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal

filipe.correia@fe.up.pt

Ademar Aguiar
INESC Porto,

Departamento de Engenharia Informática,
Faculdade de Engenharia,

Universidade do Porto
Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal
ademar.aguiar@fe.up.pt

Abstract—Knowledge plays a key role in software development,
and the effectiveness of how it is captured into artifacts, and
acquired by other team members, is of crucial importance to
a project’s success. The life-cycle of knowledge in software
development is derived from the adopted artifacts, practices and
tools. These axes are here reviewed from a knowledge capture
and acquisition perspective, and several open research issues are
identified.

The present work is being carried out in the context of the
author’s doctoral research. The research objectives are derived
from the presented open issues, and a research strategy is
outlined. Some preliminary results are also presented.

Index Terms—Software Engineering Tools and Methods

I. INTRODUCTION

During software development activities, developers resource
to mental models of the program that they are building,
by inspecting project artifacts, by direct contact with other
developers, and by using knowledge gained from previous
experiences. This is a costly process, and the mental models
that exist at a given moment may be easily forgotten as time
passes, and the developers’ attention is diverted to other tasks
and program locations. If this knowledge is not captured and
shared, it may be lost, and thus have to be reacquired the next
time it is needed, with the overhead that entails.

Knowledge

Capture

InformationAcquisition

Fig. 1. Knowledge Capture and Acquisition

Although the topics of knowledge capture and acquisition
have been addressed before, we will start by clarifying some
concepts for the purpose of this document, as they have
evolved over the years, and are not always consensual [1].

Knowledge Capture, or representation, is seen as the pro-
cess of recording knowledge in a medium, and, doing so,
transforming and encoding it as information. On the other
hand, Knowledge Acquisition is the process through which a
human actor gains knowledge, that is, the process of learning
and understanding information. Figure 1 depicts this duality.

Research in the cognitive science domain has dealt with
several knowledge-related issues. It has allowed to identify
different types of knowledge and strategies through which they
are acquired, with results useful on different domains of human
activity, including that of software development [2].

Developing software is a knowledge-intensive activity, heav-
ily relying on the creation and evolution of knowledge. The
difficult part of the process of developing software is not the
production of programming language statements per se, but
the discovery of the knowledge that will allow the developers
to build it. This is essentially an activity of learning, or
acquiring knowledge [3], in that artifacts, in which knowledge
manifests itself, go through different levels of formality: from
unstructured information, as textual documents and verbal
communication, to instructions to be executed by computers.

Software processes appear as a means of achieving in-
creased quality and productivity on the development of soft-
ware, defining a set of rules and trying to make the course of
events more predictable and repeatable.

The best process for a given software project is very
dependent on it’s specific context. Although there are a number
of pre-established development processes, they may be seen
as starting points, or sets of practices that are known to work
well together. When put into use, processes are adjusted to fit
the particular context at hand, or built up from a minimal set
of core practices, that grows according to the project’s needs
[4]. As part of a knowledge-intensive activity, these practices
are ways of directly supporting the capture and the acquisition
of knowledge.

Software development relies on the use of tools to support
both the handling of the different kinds of artifacts, and the



carrying out of development practices. They are a means of
capturing knowledge, and of manipulating the information
derived therefrom.

The purpose of this section was to introduce the topics of
knowledge capture and acquisition in software development,
and Section II will further review them and present current
approaches. Section III describes the main objectives of the
proposed research, and how these objectives are to be reached.
Some preliminary work is then presented in Section IV, and
the envisioned work plan is described in Section V. Some
concluding remarks are made in Section VI.

II. STATE-OF-THE-ART

Knowledge capture and acquisition are not trivial tasks, and
several tools have been devised to help developers in this
regard [5]. In practice, they are aimed mostly at supporting
development artifacts and practices, but how to make these
tools efficient from a knowledge standpoint is not always
clear. In the remaining of this section we will present some
of software development’s artifacts, practices, and tools, from
a knowledge capture and acquisition perspective.

A. Software artifacts

A software system’s knowledge is important in different
ways, and to different people, depending on which knowledge
is recorded and how is this knowledge organized. The mainte-
nance of software artifacts’ understandability may be achieved
by complementing or making more accessible the information
enclosed on those artifacts, which may be of different kinds,
including source code, models, graphic-design resources, a
working product, etc. They are all by-products of the software
development process, but don’t always carry by themselves all
the necessary information in order to be easily understood and
reused.

1) Documentation: Software documentation plays an im-
portant role in the acquisition of knowledge. It is an effective
way to capture unstructured knowledge, to share it between
team members and to preserve it for future use. Despite this,
it is still common practice to see the creation of documentation
as a low priority activity, or even one that is not worthwhile to
carry out, due to the effort its creation and maintenance may
imply.

Part of the complexity of producing software documentation
comes from the fact that several forces are at stake when
choosing which information to record [6], [7], [8].

Different writers and audiences. Documentation is pro-
duced and used by participants with different roles in the
software development process, each possessing different
levels of knowledge, and having different knowledge
needs.
Different subjects. Documentation is commonly made
of textual descriptions but usually also addresses other
artifacts, further describing them or using them to support
more elaborate descriptions. A given subject may be
covered along different facets, and along different levels
of abstraction.

Different notations. Different kinds of information are
better communicated with different notations. Some kinds
of information, a textual description may be the most
appropriated, but there are also those better conveyed by
using diagrams, or source code.
Different forms. According to the specific context at
hands, one can conceive and structure a document in a
way that it’s most effective. There are recurring types of
document structures, that address typical documentation
structuring needs: scenarios, design patterns and pattern
languages, system overviews, user manuals, tutorials,
contextual help, frequently asked questions, cookbooks,
recipes, hooks and motifs, among others.

Different alternatives have been considered over the years
to support software documentation. Approaches like Literate
Programming, Elucidative Programming, Code Annotations
and wikis, although not in universal use, are some of the
most effective. Some tools to support these approaches will
be presented on Section II-C.

2) Models: The creation of abstractions is a recurring so-
lution in the conception of software, as they allow developers
to focus on the design of software being built, instead of the
implementation details.

Model Driven Engineering (MDE) goes beyond the use of
models as a way to abstract technology-related issues, and
sees them as a way of abstracting business domains [9].
MDE approaches provide several benefits, including increased
reuse, fewer bugs, shorter time-to-market and systems that are
simpler to understand [10].

However, the creation and consumption of models brings
with it several challenges [11].

Level of abstraction. Several modeling languages allow
the creation of models, among which the Unified Mod-
eling Language (UML) is one of the most successful.
It allows to model software systems from different per-
spectives, according to a defined meta-model. However, it
is sometimes needed to resort to other types of models,
that are more specific to a given domain. Finding the
appropriate level of abstraction may not be easy, if it
is to accommodate all the required information for that
domain.
Consistency. Some approaches see the use of models
and other artifacts as independent, while other approaches
take further advantage of models by generating other arti-
facts from them, or interpreting them at runtime [12]. The
later ones have the advantage of avoiding the maintenance
of multiple artifacts that record same knowledge, or have
parts is common, both easing the processes of recording
and understanding those artifacts.
Skills. Finding people with the right set of skills may
be difficult, as it requires knowledge in domain analysis,
metamodelling, generator/interpreter development and ar-
chitecture. Such profile may be more difficult to find, and
their knowledge is sometimes difficult to pass on to other
team members.



3) Source code: Code is usually seen as the primary
software development artifact. Even though other approaches
tend to focus on alternative kinds of artifact as the primary
ones (MDE focuses on models, LP focuses on documentation,
etc), source code is still needed to instruct machines what to
do. In fact, some argue that source code is the only artifact
that one can depend on, as it doesn’t lie — if inconsistent
with other artifacts, source code is the artifact to go to for the
actual program behaviour.

Despite this, the knowledge that gave origin to the source
code is very weakly recorded within this form. It exists only
implicitly, rather than explicitly, being therefore difficult, if
even possible, for the developers to reconstruct the original
mental model at a later time from source code alone.

B. Practices

Agile processes, like Extreme Programming [13], Scrum
[14] and Crystal Clear, have emerged from the need for lighter
methodologies in the development of software, as opposed
to traditional heavyweight ones. In this context, agility refers
to the adaptiveness towards change, and to the incremental
development of value, which is part of the essence of these
processes.

The set of practices that make up a process vary. They define
behaviors to be taken by team members, having in mind an
intended outcome, in what concerns factors like project plan-
ning, design, coding, testing and team work. These behaviors
are ultimately about manipulating artifacts and communicating
information between team members — which can be reduced
to a set of knowledge-related activities, including it’s capture
and acquisition. The three practices bellow are of common use
in agile processes, and are here detailed as to exemplify how
the capture and acquisition of knowledge may be related to
the response to change and to the set of adopted practices.

Refactoring. Technique that consists on the improvement
of a system’s internal structure without affecting it’s external
behavior. It plays a part in improving knowledge acquisition,
by encouraging developers to capture knowledge in a simpler
and clearer way.

Pair Programming. This practice is about two program-
mers working together, with the use of only one computer,
with one keyboard. While one of them types in the code,
the other continuously reviews it and considers the strategic
direction of the work. Pair programming addresses the issue
that captured knowledge never reflects the original mental-
model accurately, and that it may quickly become outdated. It
addresses it by avoiding knowledge capture, and relying on a
stronger communication between the two team members that
are pairing.

Test Driven Development. Technique in which unit tests
are developed prior to developing the code that will be
tested, using very short development iterations. It induces the
programmer to think in the implementation more thoroughly.
The captured knowledge, as both the implementation and the
tests, will thus better convey the desired behavior for the
system.

C. Tools

Different approaches and tool sets to software documenta-
tion are presented below.

Literate Programing. The ultimate objective of Literate
Programming (LP) is to make computer programs that
are comprehensible by human beings [15], by switching
the focus traditionally given to source code artifacts, to
documentation artifacts. The fundamental idea behind LP
is that, when writing programs, one should not instruct a
computer what to do, but rather explain to human beings
what the computer will do.
This approach is supported by a set of tools that allow
the production of literate programs, by describing pieces
of the program at the same time they are developed, and
connecting them as a web of related ideas. The result is a
unified document, combining several fragments (chunks)
of source code and documentation, disposed not as a
set of assorted blocks of information, but following a
line of reasoning. Contents are arranged in the order in
which they are written, so that it may be better read
and understood [16], [17]. This is an advantage towards
readability, when comparing to the approach of having
source code organized according to its own structure.
The original LP approach as evolved since it’s concep-
tion, and several variants have since appeared. Namely,
Reverse Literate Programming [18], Literate Modeling
[19], Theme-based Literate Programming [17] and Elu-
cidative Programing [20] are some of the most proemi-
nent.
Code annotations. This technique is inspired in LP, in
that documentation is obtained from an unified represen-
tation of textual descriptions and source code. However,
it is also fundamentally different from LP, as textual
descriptions exist in the form of source code comments.
This means that the unified representation of textual
descriptions and source code is itself valid and compilable
source code, avoiding an additional step of extracting
the source code for compilation. When comparing to
LP, it is also important to highlight that writing code
annotations is not a document-oriented way of creating
documentation, but rather a source code oriented one. As
such, it misses one of the main benefits of LP, which is
the possibility of reordering documentation according to
an intended psychological arrangement.
Code annotations are primarily used for creating API
documentation, and don’t address all the issues that LP
tries to address. Having said this, it has shown to be
quite successful in this niche, and has helped increas-
ing the awareness on the need for documentation, and
showed how can it enhance knowledge acquisition. The
widespread use of this approach as been much the merit
of Javadoc [21], a tool supporting this functionality for
the Java language, but similar tools have since appeared
for different languages and environments.
Wikis. Although our interest is on the use of wikis in



the context of software development, they have a wide
scope of application. They can be generically defined as
web-based systems aimed at the collaborative writing of
documents.
Some wiki engines have specifically been conceived
for the domain of software development, and provide
additional features for the integration of software arti-
facts. This is done, not by copying them to the wiki
environment, but by linking or inlining the appropriate
artifact [22], [23]. Unlike wiki-links between wiki pages,
these references carry a special semantics, according to
the kind of artifact being linked (code fragment, UML
model, issue-tracking record, etc).
These previous experiences have shown wikis to possess
characteristics that grant several benefits in the area
of software documentation [22], [24], [25]. They show
that wikis allow an eased access to both technical and
not technical people; promote participation of the entire
project team in the documentation process; improve over-
all team communication; allow integration of heteroge-
neous types of content while maintaining the information
structured; and may be extended to allow integration in
IDEs and in the entire development process.

Knowledge captured as models is richer in structure than
knowledge captured as documentation, which makes the re-
quirements for modeling tools more demanding. Models have
also more diverse goals — for example, they may be used
as documentation, but it may make sense also to use them
as executable artifacts — requiring modeling tools to be
integrated with source code creation tools, as well as with
document creation tools.

Platforms such as the Eclipse Modeling Framework (EMF)
and Microsoft Oslo, provide visual tools, domain specific
languages and model transformation mechanisms, from within
integrated development environments.

As to source code, there are many tools supporting its
creation. Integrated Development Environments (IDEs), such
as Eclipse and Visual Studio provide this capability, while also
allowing additional mechanisms. Among others, they provide
mechanisms for code navigation and visualization [26], [27],
as well as a quicker expression of the user’s intents with
features like Code-completion and Refactoring.

III. RESEARCH OBJECTIVES AND APPROACH

Existing approaches to knowledge capture and acquisition
in the context of software development still leave space open
for improvement. This research will focus on addressing the
following identified issues.

Collaboration. Software systems are usually products of
the work of several people. The collaboration towards
the same objective brings the need for constant commu-
nication and coordination among team members, which
is not easy to fulfil in an efficient way, specially as teams
increase in size, and become geographically distributed.
There are several tools, following distinct approaches,
that already help making collaborative development tasks

more efficient [28], [24], [26], [29], allowing several
players to contribute to the creation of a given arti-
fact. However, the social interactions that don’t directly
translate into the creation of an artifact are usually left
out of the scope of these tools. By further supporting
the interactions between the different actors, subsequent
knowledge capture and acquisition may be substantially
improved.
Consistency. Whether on an initial conception phase or
on a maintenance phase, most software systems evolve
constantly, which means that several existing artifacts
will also be changing. Keeping them in-sync is a dif-
ficult issue, especially when unstructured information
is involved, such as textual documentation. The value
of the existing artifacts, from a knowledge acquisition
standpoint, directly depends on their ability to convey
accurate information.
Contents Integration. Integrating contents means that
instead of dealing with heterogeneous artifacts indepen-
dently, the implicit relations that exist between them are
made explicit. Current approaches store these relations
and allow to navigate them, or use verisimilitude [30],
which consists on having several artifacts physically close
to one another [8], [31], [24].
These mechanisms support both knowledge capture and
acquisition to some degree, but still require a consider-
able effort to be made by the information authors and
consumers.
Reuse. Good productivity gains can be achieved by
reusing source code artifacts, namely by employing com-
ponents, frameworks, libraries, and other techniques, but
reuse may play an equally important role with other
artifacts too [32]. The reuse techniques used for source
code artifacts are not always directly applicable, but
some concepts from the object-oriented paradigm, such as
inheritance and information hiding, have shown to be of
some use concerning documentation [33], [34]. However,
it is still not clear how to support such concepts in
modern environments, without over-complexifying tools
and placing additional barriers to effective knowledge
capture.
Environments. Modern IDEs reflect some good and
commonly used practices, namely, they are integrated
with test frameworks, refactoring tools, bug-tracking sys-
tems, and version control systems, among others. This
integration of tools under the same environment is a step
closer of seamless supporting an entire software devel-
opment process. Among the advantages of an integrated
environment, one can find:

– Developers are subjected to less mode-switching, as
they will be required to use a lower number of tools,
which are made available in a consistent way.

– It becomes easier to switch between underlying tools
with similar objectives, as it exists a common ab-
straction over similar operations. An example of this



is the support given by IDEs to different program-
ming languages, or the support given to different
source code versioning systems.

– By using an integrated environment some tasks can
be made less repetitive, as a simple command, is-
sued by the user, can transparently automate several
underlying tools.

Although desktop-based IDEs are still the environments
of choice of most developers, following web-based ap-
proaches is becoming increasingly popular with some
types of tools. Namely, issue-tracking systems and docu-
mentation systems, have prospered as web-based applica-
tions. Although IDEs also frequently provide support for
these tools, not all are easily integrable on both desktop
and web environments [28], fragmenting the development
environment.
The trend seems to be towards the web and the use of rich
user interfaces, and web-based IDEs may even come to
fully replace desktop-based ones. However, current solu-
tions are required to take into account the coexistence of
these distinct realities. This poses an interesting challenge
from a knowledge capture and acquisition perspective, as
information becomes scattered and difficult to combine,
cross-reference and made consistent.

According to these issues, the following research questions
may be outlined:

• How may knowledge capture be improved?
– How to identify the knowledge that is not captured

but should be?
– How to know the appropriate level of detail to

capture?
– Which strategies can be used to capture knowledge

in a non-intrusive way?
• How may knowledge acquisition be improved?

– How to identify which recorded information would
fulfill a certain knowledge gap?

It is the author’s thesis statement that the presented issues
may be addressed by providing an approach to knowledge
capture and acquisition, along with supporting tools,
improving the quantity and quality of recorded knowledge
and leveraging the support for software understanding.

More specifically, the main objectives of this research will
be to:

• Improve knowledge capture by leading developers to
record structurally rich information.

• Given the continuous change information goes through,
support its incremental maintenance and evolution, so that
the value of captured knowledge may be kept.

• Improve knowledge acquisition by providing developers
with the information they need, given an identified knowl-
edge gap.

Several authors point out that the most adequate research
strategy is one that combines several methods, according to the
specific research at hand. Known research methods have been

grouped into four general categories [35], [36]. As described
by Zelkowitz and Wallace [35]:

Scientific methods. Scientists develop a theory to explain
a phenomenon; they propose a hypothesis and then test
alternative variations of the hypothesis. As they do so,
they collect data to verify or refute the claims of the
hypothesis.
Engineering methods. Engineers develop and test a
solution to a hypothesis. Based upon the results of the
test, they improve the solution until it requires no further
improvement.
Empirical methods. A statistical method is proposed
as a means to validate a given hypothesis. Unlike the
scientific method, there may not be a formal model or
theory describing the hypothesis. Data is collected to
verify the hypothesis.
Analytical methods. A formal theory is developed, and
results derived from that theory can be compared with
empirical observations.

Different kinds of methods will coexist throughout the
phases of this doctoral work, namely, empirical methods will
be used to identify both knowledge capture and acquisition
patterns, scientific methods will be applied for deriving
theoretical models from these real-world observations, en-
gineering methods used for developing concrete tools and
empirical methods will be again applied in the final part of
the research, to validate some parts of the achieved results.

IV. CURRENT WORK AND PRELIMINARY RESULTS

Preliminary research has been done by the authors on
the conception of Weaki: a wiki-based prototype solution to
structuring software documentation in such way that is non-
intrusive for authors, and leverages knowledge acquisition by
allowing the increasing awareness of team members towards
each other and the created information structure.

A new metric was devised to assess the compliance between
a given documentation content and its associated structure,
laying the grounds for a mechanism to support consistency
maintenance.

Evolution is taken into account by supporting incremental
formalization of contents, and there are direct advantages
in terms of collaboration, by building upon the fundamental
principles of wikis.

V. WORK PLAN AND IMPLICATIONS

A further study of both existing tools, practices and artifacts
will be conducted, in order to identify recurrent knowledge
capture and acquisition patterns from existing approaches, as
well as related benefits and liabilities. Theoretical models will
be derived from these observations, and will be the base for
the development of new tools.

Figure 2 depicts an overview of the research plan, with the
envisioned timeframe.

Weaki is a first step in this direction, and will continue to
evolve to accommodate additional functionality.



Fig. 2. Workplan overview

VI. CONCLUSIONS

Despite its importance, several difficulties exist in the pro-
cess of recording knowledge and learning from knowledge that
was previously recorded.

Some of the existing artifacts, practices and tools that play
a part in this process were reviewed, and some open issues
identified for research, namely: Collaboration, Consistency,
Integration of Contents, Reuse and Environments. A thesis
statement was also established, along with a set of research
questions.

The presented open issues were taken into account in the
creation of Weaki, but are still to be focus of further research
and validation in real world scenarios.

We expect this research to provide a solid contribution both
to the quality of the captured knowledge on a software project
context, and the way this recorded knowledge is learned and
used by project actors.

ACKNOWLEDGMENT

We would like to thank ParadigmaXis, S.A. for sponsoring
this research.

REFERENCES

[1] km forum, “KM forum discussion archives - knowledge vs
information,” http://www.km-forum.org/t000008.htm, 1996. [Online].
Available: http://www.km-forum.org/t000008.htm

[2] P. N. Robillard, “The role of knowledge in software development,”
Commun. ACM, vol. 42, no. 1, pp. 87–92, 1999.

[3] P. G. Armour, “The five orders of ignorance,” Commun. ACM, vol. 43,
no. 10, pp. 17–20, 2000.

[4] B. Boehm and R. Turner, “Observations on balancing discipline and
agility,” in Agile Development Conference, 2003. ADC 2003. Proceed-
ings of the, 2003, pp. 32–39.

[5] M. Storey, F. D. Fracchia, and H. A. Mller, “Cognitive design elements to
support the construction of a mental model during software exploration,”
J. Syst. Softw., vol. 44, no. 3, pp. 171–185, 1999.

[6] A. Aguiar, “A minimalist approach to framework documentation,” Ph.D.
dissertation, Faculdade de Engenharia da Universidade do Porto, Sep.
2003.

[7] G. Butler, R. K. Keller, and H. Mili, “A framework for framework
documentation,” ACM Comput. Surv., vol. 32, p. 15, 2000.

[8] J. Hartmann, S. Huang, and S. Tilley, “Documenting software systems
with views ii: an integrated approach based on XML.” Sante Fe, New
Mexico, USA: ACM, 2001, pp. 237–246.

[9] D. Schmidt and D. Schmidt, “Guest editor’s introduction: Model-Driven
engineering,” Computer, vol. 39, no. 2, pp. 25–31, 2006.

[10] D. Riehle, S. Fraleigh, D. Bucka-Lassen, and N. Omorogbe, “The
architecture of a UML virtual machine,” in OOPSLA ’01: Proceedings
of the 16th ACM SIGPLAN conference on Object oriented programming,
systems, languages, and applications. Tampa Bay, FL, USA: ACM,
2001, pp. 327–341.

[11] T. Stahl and M. Voelter, Model-Driven Software Development: Technol-
ogy, Engineering, Management, 1st ed. Wiley, May 2006.

[12] F. Correia and H. Ferreira, “Trends on adaptive object model research,”
in Proceedings of the Doctoral Symposium on Informatics Engineering
2008. Porto, Portugal: FEUP, 2008.

[13] K. Beck and C. Andres, Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional, 2004.

[14] L. Rising and N. Janoff, “The scrum software development process for
small teams,” IEEE Softw., vol. 17, no. 4, pp. 32, 26, Jul. 2000.

[15] D. E. Knuth, “Literate programming,” Comput. J., vol. 27, pp. 97–111,
1984.

[16] D. Knuth, “The WEB system of structured documentation,” 1983.
[17] A. Kacofegitis and N. Churcher, “Theme-based literate programming,”

in Software Engineering Conference, 2002. Ninth Asia-Pacific, 2002, pp.
549–557.

[18] M. Knasmueller, “Reverse literate programming.” Dundee: Johannes
Kepler Universitat Linz, 1996.

[19] J. Arlow, W. Emmerich, and J. Quinn, “Literate modelling - capturing
business knowledge with the UML,” J. Bézivin and P.-A. Muller, Eds.,
vol. 1618. Springer, 1999, pp. 189–199.

[20] K. NØrmark, “Requirements for an elucidative programming environ-
ment,” in Program Comprehension, 2000. Proceedings. IWPC 2000. 8th
International Workshop on, 2000, pp. 119–128.

[21] L. Friendly, “The design of distributed hyperlinked programming docu-
mentation,” in IWHD’95, Montpellier, France, 1995.

[22] A. Aguiar, G. David, and M. Padilha, “XSDoc: an extensible wiki-based
infrastructure for framework documentation,” in Jornadas de Ingenierı́a
del Software y Bases de Datos, Alicante, Oct. 2003.

[23] Edgewall Software, “The trac project — integrated scm & project
management.” [Online]. Available: http://trac.edgewall.org/

[24] A. Aguiar and G. David, “WikiWiki weaving heterogeneous software
artifacts.” San Diego, California: ACM, 2005, pp. 67–74.

[25] D. Thomas, “Programming with models - modeling with code —
the role of models in software development,” Journal of Object
Technology, vol. 5, pp. 15–19, Nov. 2006. [Online]. Available:
http://www.jot.fm/issues/issue 2006 11/column2

[26] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby, “Shared waypoints
and social tagging to support collaboration in software development.”
Banff, Alberta, Canada: ACM, 2006, pp. 195–198.

[27] M. D. Storey, D. ubrani, and D. M. German, “On the use of visualization
to support awareness of human activities in software development: a
survey and a framework,” in Proceedings of the 2005 ACM symposium
on Software visualization. St. Louis, Missouri: ACM, 2005, pp. 193–
202.

[28] M.-A. Storey, “Theories, methods and tools in program comprehension:
past, present and future,” in Program Comprehension, 2005. IWPC 2005.
Proceedings. 13th International Workshop on, 2005, pp. 181–191.

[29] W. Xiao, C. Chi, and M. Yang, “On-line collaborative software develop-
ment via wiki.” Montreal, Quebec, Canada: ACM, 2007, pp. 177–183.

[30] V. Pieterse, D. G. Kourie, and A. Boake, “A case for contemporary lit-
erate programming.” Stellenbosch, Western Cape, South Africa: South
African Institute for Computer Scientists and Information Technologists,
2004, pp. 2–9.

[31] K. M. Anderson, S. A. Sherba, and W. V. Lepthien, “Towards large-scale
information integration.” Orlando, Florida: ACM, 2002, pp. 524–534.

[32] K. Haramundanis and L. Rowland, “Experience paper: a content reuse
documentation design experience.” El Paso, Texas, USA: ACM, 2007,
pp. 229–233.

[33] B. Childs and J. Sametinger, “Literate programming and documentation
reuse,” in Software Reuse, 1996., Proceedings Fourth International
Conference on, 1996, pp. 205–214.

[34] J. Sametinger, “Object-oriented documentation,” SIGDOC Asterisk J.
Comput. Doc., vol. 18, pp. 3–14, 1994.

[35] M. Zelkowitz and D. Wallace, “Experimental models for validating
technology,” Computer, vol. 31, pp. 23–31, 1998.

[36] W. F. Tichy, N. Habermann, and L. Prechelt, “Summary of the dagstuhl
workshop on future directions in software engineering: February 17-21,
1992, schloß dagstuhl,” SIGSOFT Softw. Eng. Notes, vol. 18, pp. 35–48,
1993.


