
Incremental Knowledge Acquisition in Software
Development Using a Weakly-Typed Wiki

Filipe F. Correia
Faculdade de Engenharia,

Universidade do Porto
Rua Dr. Roberto Frias, s/n
filipe.correia@fe.up.pt

Hugo S. Ferreira
INESC Porto, DEI

Faculdade de Engenharia,
Universidade do Porto

Rua Dr. Roberto Frias, s/n
hugo.sereno@fe.up.pt

Nuno Flores
Faculdade de Engenharia,

Universidade do Porto
Rua Dr. Roberto Frias, s/n
nuno.flores@fe.up.pt

Ademar Aguiar
INESC Porto, DEI

Faculdade de Engenharia,
Universidade do Porto

Rua Dr. Roberto Frias, s/n
ademar.aguiar@fe.up.pt

ABSTRACT
Software development is a knowledge-intensive activity and
frequently implies a progressive crystallization of knowledge,
towards programming language statements. Although wikis
have proved very effective, for both collaborative authoring
and knowledge management, it would be useful for knowl-
edge acquisition to better support team awareness and the
recognition of knowledge structures, their relations, and
their incremental evolution. This paper presents Weaki, a
wiki prototype especially designed to support incremental
formalization of structured contents that uses weakly-typed
pages and type evolution. Weaki was applied in academic
settings, by students of Software Engineering Labs.

Keywords
Semantic Wikis, Knowledge Acquisition, Software Engineering

1. INTRODUCTION
Software development is a knowledge-intensive activity

and frequently implies a progressive crystallization of knowl-
edge with a very focused goal: to obtain programming
language statements to be executed by a computer [3].

Since most of the development effort is spent on formaliz-
ing knowledge, i.e., on gathering unstructured information
from written documents and verbal conversations, and
converting them to concrete code and models, it is important
to effectively support such formalization process.

Software knowledge is typically captured in separate
interrelated artifacts of different types, such as text, source
code, models, and images, among others, which are often
produced cooperatively, by different kinds of people, and at
different moments of the software life cycle [1]. To cope with
this complexity, software engineers use techniques and tools,
that support the processing of knowledge required to obtain
and evolve a computer program [3].

Due to their simplicity and effectiveness, for both col-
laborative authoring and knowledge management, wikis are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WikiSym ’09 October 25–27, 2009, Orlando, Florida, U.S.A
Copyright 2009 ACM 978-1-60558-730-1/09/10...$10.00 .

nowadays extremely popular and massively used by software
developers. Weaki aims at augmenting these benefits by al-
lowing the incremental formalization of structured contents
and thus improving awareness with weakly-typed pages and
type evolution.

2. WEAKI: A WEAKLY-TYPED WIKI
Software development often requires a lot of team work.

Nevertheless, knowledge about existing collaboration rarely
goes beyond the content of the authored artifacts them-
selves. At best, a member knows who edited a certain
artifact for the last time, but not who is the most proficient
member on that artifact, or who are the members for which
that artifact is important to. This “meta-knowledge” is
specially relevant for new members, or members delving into
artifacts for the first time. Eliciting these implicit relations
is important to raise team awareness.

Software documentation, a primary source of knowledge
in a software project, is frequently supported by wikis.
Semantic Wikis can provide structured information, thus
laying the grounds to achieve higher awareness. However,
this frequently implies a trade-off between the benefits of
structured information and some of the design principles
that make the essence of what wikis are [2].

2.1 Key Design Principles
Weaki allows structured contents in a way that is non-

intrusive for authors, with the goal of leveraging awareness
and knowledge acquisition. Structure provided by tradi-
tional wikis is not enough if computers are to automatically
process this information, and approaches taken by semantic
wikis frequently demand an additional effort from authors.
Weaki strikes a balance between informal and formal infor-
mation, by taking advantage of the following concepts, some
of them inspired in the design of programming languages.

Typed pages. A type in Weaki is equivalent to a class
in object-oriented programming. As in most semantic wikis,
pages have a type, which is used to formalize its structure.

Inheritance. Similar to the concept by the same name
in object-oriented programming, inheritance is a way of
defining classes (i.e. types) that are specializations of other
classes. In the context of Weaki, it allows reuse of structure
and a way to express is-a relations.

Weak-typing. Weaki allows the type of a page to change.
A parallel can be made to weakly-typed programming
languages, which allow types to be coerced to other types,
that is, to switch the type of a given instance without

actually converting the underlying contents.
Dynamic typing. Structure and contents of a given wiki

page are authored independently, having the page’s type as
the single point of contact between them. This binding,
between structure and contents, is made dynamically at
runtime taking advantage of the existing document-oriented
structure of the wiki page.

Everything is a page. Authors may create and edit
types through the same mechanism used to create and edit
contents, as both types and contents are authored as regular
wiki pages. Some programming languages have also been
designed to provide a uniform view over types and instances,
namely, some object-oriented languages which follow the
principle of “everything is an object”.

These principles extend those of traditional wikis [2],
introducing structure while maintaining the same base
philosophy. The following design principles of wikis are
frequently affected when additional structure is introduced,
but they are specially taking into account in Weaki.

Organic. Both structure and content are open to be
edited and evolved.

Mundane. Authoring content and structure is based on
mostly the same set of text conventions of a traditional wiki.
This means authors won’t be confronted with structure-
specific conventions, unless they choose so.

Overt. Although more elaborate views are also provided,
the default view of a wiki page directly reflects the input
required to produce it.

Incremental. Weaki takes this principle to both types
and the relation between them and their pages.

Universal. Typing pages and defining type’s structure
can be seen as forms of organizing contents. Weaki allows
to create the structure of a type using the same mechanism
used to create regular pages.

Tolerant. Even if not strictly complying to its type, a
page can be fully rendered, and the parts that do comply
can be interpreted.

2.2 Features
The most important features of Weaki are detailed below.

Structure Emergence. While editing pages, recurrent
common structures will emerge. These structures can at any
time be captured as reusable Types.

Homogeneity. Types are wiki pages. All known wiki
metaphors are applicable.

Scaffolding. Whenever someone wants to create a new
page of a particular Type, the wiki automatically fills it with
an initial skeleton, derived from that Type’s structure.

Structured Views. Structured viewing filters out
content not compliant to the page’s Type. This provides
a consistent view of every page of the same Type.

Content Assist. The creation of new content is assisted
with context-aware suggestions, while editing a typed page.

Global Time Labels. Labelling a moment in time.
View the entire wiki state at that moment.

Type Awareness. Types evolve. Pages evolve. Their
level of compliance varies. Awareness of this metric allows
balancing evolution vs. type adequacy.

Team Awareness. The“neighbourhood”consists of wiki
contributors (authors, editors, even readers) that “inhabits”
the same pages as you. Being aware of who they are,
nurtures constructive “conversations”.

3. CONCLUSION
Two kinds of benefit are achieved from applying the above

design principles and features.

3.1 Incremental formalization
To declare the type of a wiki page is to classify it. The

author may do so on the moment the page is created and, if
the type in question is a new one, she may even concretely
define it’s structure at that time. However, it is frequently
unrealistic to commit to a structure in an early stage of
content authoring, as the required knowledge may only be
acquired while the page’s contents are written. Even when
the author is lead to define a structure before creating the
contents, the evolution of the first is usually still driven by
the evolution of the later.

Weaki takes this factor into account, by letting authors
focus solely on the contents. This supports experimentation
and creativity, as it frees authors from the extra overhead
of creating the structure. An author may at any time settle
for a given approach to how contents are organized, and
may then formalize their structure. Furthermore, having the
option of disregarding structure while there is no immediate
value in adding it, lowers the barrier to contribute to the
knowledge base, specially for non-technical authors. Any
author may add the structure when it reveals itself useful.
Hence, the creation of structure is bottom-up, it emerges
from the contents, instead of being defined a priori ; it may
be said to be Emergent Structure.

3.2 Awareness
Weaki improves awareness on a two-level basis:
Awareness through structure. The system can infer

new relationships between several kinds of contents and
recommends a possible structure. When a user is adding
new content, the wiki analyses both the context where
that content is being inserted and the structure of the
content itself. It then evaluates the compliance between
the content and the available types for that context and
suggests the most suitable ones. This recommendation of
structure improves the authoring task and allows users not
to excessively invest on complying to a structure a priori.
The structure will, eventually, emerge from the contents
themselves.

Awareness through elicitation of data. By present-
ing information derived from the relationships other users
have with the content (“most frequent editor(s)”, “owner”,
“most frequent reader(s)”, ranking, feeds), the system sup-
ports an automated emergence of knowledge, providing new
levels of understanding and taking into account the social
nature of software development.

4. REFERENCES
[1] A. Aguiar and G. David. WikiWiki weaving

heterogeneous software artifacts. In Proceedings of the
2005 international symposium on Wikis, pages 67–74,
San Diego, California, 2005. ACM.

[2] W. Cunningham. Wiki design principles.
http://c2.com/cgi/wiki?WikiDesignPrinciples, Mar.
2009.

[3] P. N. Robillard. The role of knowledge in software
development. Commun. ACM, 42(1):87–92, 1999.

	1 Introduction
	2 Weaki: A Weakly-Typed Wiki
	2.1 Key Design Principles
	2.2 Features

	3 Conclusion
	3.1 Incremental formalization
	3.2 Awareness

	4 References

