
Documenting Software Using Adaptive Software Artifacts

Filipe Figueiredo Correia
Faculdade de Engenharia, Universidade do Porto, Portugal

filipe.correia@fe.up.pt

Abstract
Creating and using software documentation presents numer-
ous challenges, namely in what concerns the expression of
knowledge structures, consistency maintenance and classifi-
cation. Adaptive Software Artifacts is a flexible approach to
expressing structured contents that tackles these concerns, and
that is being realized in the context of a Software Forge.
Categories and Subject Descriptors D.2 Software Engi-
neering [D.2.7 Distribution, Maintenance, and Enhance-
ment]: Documentation
Keywords documentation, wikis, modeling, knowledge

1. Research Problem and Motivation
Software developers capture knowledge as software artifacts
of different kinds, from source-code, to models, to textual
documents. Not only are some of them an integral part of the
software being built, they are vital for team communication
and to preserve knowledge for future use.

These artifacts are not created at the same time and evolve
throughout the project’s lifetime. They take part of the sense-
making process in which the team identifies the information
patterns (i.e., structure) that underly a given body of knowl-
edge. The team may need to capture, share and reason about
those ideas to discover how they can be structured, therefore
they may first capture them as free-form contents and, only
afterwards, capture them as increasingly more specialized ar-
tifacts, such as tasks, models and source-code.

On the one hand, capturing information’s structure explic-
itly makes it more concrete, unambiguous and terse. On the
other hand, free-form contents have the benefit of not being
subject to structural constraints, which is important during ex-
ploratory work. One of the downsides of free-form contents,
however, is that they don’t directly support sharing informa-
tion patterns between team members. Information is also not
easily automatable — e.g., the cost of maintaining free-form
contents is high, as keeping their consistency requires con-
tinuous review. Moreover, organizing and classifying infor-
mation for efficient access is often difficult and classification
schemes may also need to be constantly updated to reflect the
evolving body of information.

Adaptive Software Artifacts combine the benefits of free-
form and structured contents. It is an approach to make infor-
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPLASH ’13, October 26–31, 2013, Indianapolis, Indiana, USA.
Copyright is held by the owner/author(s).
ACM 978-1-4503-1995-9/13/10.
http://dx.doi.org/10.1145/2508075.2514873

mation within software development teams easier to use and
evolve, especially in the context of medium-to-large projects
where the amount of knowledge involved easily heightens all
of these challenges.

2. Background and Related Work
A number of different approaches have addressed the capture
of knowledge of a software project as documentation.

Their goals range from lowering the barrier to entry and
collaboration (e.g. wikis), integration with other artifacts for
added expressiveness, readability and maintainability (e.g. lit-
erate programming, code annotations, IDEs, software forges),
or making it more unambiguous and concrete (e.g. modeling,
semantic wikis).

Integrated Development Environments (IDEs) focus
mainly on source code but try to provide a whole view of
software artifacts and the processes that use them. Software
Forges [7] differ from IDEs in that they are web-based and
don’t focus mainly on the source code. They allow to cap-
ture and integrate artifacts as diverse as wiki pages, version-
controlled files, issue-tracking tickets, and milestones, among
others. Their primary goal is to support open collaboration.

Modeling techniques are used by software developers to
represent complex topics in simpler terms, focusing on captur-
ing only their relevant aspects. Models allow to represent in-
formation with a degree of rigor and objectivity that free-form
contents cannot, but modeling tools impose constraints that
don’t always play in the user’s favor. For this reason devel-
opers often resource to lighter approaches, like textual doc-
uments or drawings. These approaches are especially popu-
lar for tasks of an exploratory or creative nature, when the
importance of being able to record incomplete and/or non-
structured information is higher that rigor. The research on
Flexible Modeling Tools tries to fill this gap [6], by combin-
ing the benefits of free-form and model-based contents, al-
lowing users to trade precision for flexibility whenever the
occasion calls for it.

3. Approach
This approach is based on the notion of Adaptive Software Ar-
tifacts. A plugin was developed for the Trac Software Forge
— instead of having at their disposal a finite set of software
artifact types (wiki pages, tickets and milestones, to name a
few), Trac users are able to create their own types of artifact,
with a completely custom-tailored structure that fits their spe-
cific project’s needs. These artifacts are adaptive in the sense
that their attributes and relations with other artifacts are not
established a priori and can be freely evolved by the users.



They are not bound to strict constraints like other structured
artifacts usually are.

The benefits of this approach over the traditional di-
chotomy between structured and free-form contents extend
beyond the support to expressing ad hoc knowledge structures
explicitly. It allows the consistency of the contents towards
their expected structure to be automatically assessed, and ac-
cess to the wiki contents can be supported by a classification
scheme that is dynamically built from the tight integration be-
tween the wiki and the adaptive artifacts.

The Adaptive Software Artifacts plugin uses several flexi-
ble modeling principles to combine the benefits of free-form
and structured contents. However, the end-result of using this
approach is not necessarily a model. This approach focuses on
structuring information of text documents (i.e., of wiki pages)
into smaller and meaningful elements, on an as-needed basis.
The result is the creation of instances (artifacts) and model
elements (artifact types), which sets this solution apart from
other flexible modeling approaches, that focus on the model
and meta-model levels. Moreover, the main goal is not to rep-
resent this information as diagrams, or to directly play a part
in the creation of executable artifacts, but to support structur-
ing and organizing textual contents.

Literate Programming and it’s derivatives (e.g., code an-
notations) also allow to combine source-code with textual de-
scriptions, but they don’t delve into structuring and organiz-
ing these textual contents. Comparatively, Adaptive Software
Artifacts encourage and leverage the creation of semantically
richer documentation.

4. Contributions and Results
The Adaptive Software Artifacts plugin is possibly the most
tangible part of this research from an engineering standpoint,
but it is not the only one. This work comprises:
• A software-forge supporting adaptive software artifacts;
• A design patterns catalog of best practices for building a

system that supports this approach.
• An experiment, conducted in an academic setting, and a

case study conducted in an industrial setting, both with the
goal of validating the approach.

Weaki is a wiki engine developed in the context of this
work, supporting the incremental capture and evolution of
structured wiki pages [2]. The lessons learned from Weaki are
being used to extend the Trac software forge to support the
notion of adaptive software artifacts1.

The implementation of the plugin can be regarded as a ref-
erence architecture but, more than specific implementations,
the goal of this work is to address the key principles that un-
derlie the approach. Such is the purpose of the design patterns
catalog mentioned above. These patterns were mined from ex-
isting literature and tools, and sometimes driven by the de-
velopment of the plugin itself. The catalog already includes
patterns of maintaining the consistency of documentation ar-

1 The current implementation is a plugin for Trac, and can be found in the
address https://github.com/filipefigcorreia/TracAdaptiveSoftwareArtifacts

tifacts [3], the classification and indexing of contents [1], the
evolution of data and meta-data in systems using the Adaptive
Object-Model architectural pattern [4], and of object-oriented
meta-architectures [5].

Furthermore, two user studies are being conducted to val-
idate the approach. An experiment was performed with the
participation of a sample of 43 students divided in two groups
— control and experimental, and is expected to provide pre-
liminary evidence of the approach’s benefits and liabilities. It
consisted of a programming exercise, comprised by a series
of simple tasks that required the use of a project’s documen-
tation, built using adaptive software artifacts. The plugin was
instrumented to collect usage data, and the participants were
asked to answer a questionnaire about their use of the tool.
While some conclusions can be directly derived from the us-
age data, others are intrinsically subjective and will be based
entirely on the results of the questionnaires. At the time of
writing of this paper the data is still being subject of analysis,
but it is expected to help answering (among other specific is-
sues) if contents are regarded as more precise, concise, easier
to understand, easier to find and more consistent, when using
this approach.

If the results from this experiment are encouraging, they
may help to motivate the use of the plugin in the industry.
Two software companies have shown interest in providing
feedback on the plugin, and one in particular has shown the
will to take part of a case study. This case study is expected
to provide some evidence regarding the authoring of contents
and may reinforce the results of the experiment.

References
[1] F. F. Correia and A. Aguiar. Patterns of information classifica-

tion. In Proceedings of the 18th Conference on Pattern Lan-
guages of Programs, Portland, OR, USA, Oct. 2011.

[2] F. F. Correia, H. S. Ferreira, N. Flores, and A. Aguiar. In-
cremental knowledge acquisition in software development us-
ing a Weakly-Typed wiki. In Proceedings of the 5th Interna-
tional Symposium on Wikis and Open Collaboration, Orlando,
FL, USA, Oct. 2009.

[3] F. F. Correia, H. S. Ferreira, N. Flores, and A. Aguiar. Patterns
for consistent software documentation. In Proceedings of the
Pattern Languages of Programs, Chicago, IL, USA, Aug. 2009.

[4] H. S. Ferreira, F. F. Correia, and L. Welicki. Patterns for data
and metadata evolution in adaptive Object-Models. In Proceed-
ings of the 15th Conference on Pattern Languages of Programs,
Nashville, TN, USA, Oct. 2008. ACM.

[5] H. S. Ferreira, F. F. Correia, J. Yoder, and A. Aguiar. Core
patterns of object-oriented meta-architectures. In Proceedings of
the 17th Conference on Pattern Languages of Programs, Reno,
NV, USA, Oct. 2010.

[6] H. Ossher, A. van der Hoek, M. Storey, J. Grundy, R. Bellamy,
and M. Petre. Workshop on flexible modeling tools: FlexiTools
2011. In 2011 33rd International Conference on Software Engi-
neering (ICSE), pages 1192—1193. IEEE, May 2011.

[7] D. Riehle, J. Ellenberger, T. Menahem, B. Mikhailovski,
Y. Natchetoi, B. Naveh, and T. Odenwald. Open collaboration
within corporations using software forges. IEEE Softw., 26(2):
52–58, 2009.


	1 Research Problem and Motivation
	2 Background and Related Work
	3 Approach
	4 Contributions and Results

